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Sebastian Höfer, Manfred Hild
Neurorobotics Research Laboratory, Computer Science Department, Humboldt-Universität zu Berlin, Berlin, Germany

hoefer@informatik.hu-berlin.de, hild@informatik.hu-berlin.de

Keywords: Slow Feature Analysis, Biped Walking, Volterra Filters, Recurrent Neural Networks, Sensorimotor Control,
Humanoid Robotics.

Abstract: This paper presents an approach for increasing the reactivity of a humanoid robot’s gait, incorporating Slow
Feature Analysis (SFA), an unsupervised learning algorithm issuing from the domain of theoretical biology.
The main objective of this work is to find a means to detect disturbances in the gait pattern at an early stage
without losing stability. Another goal is to investigate the general potential of SFA for using it within sen-
sorimotor loops which to our knowledge has not been considered until now. The application of SFA within
sensorimotor loops is motivated by pointing out its relation to second-order Volterra filters. Our experiments
show that the overall reactivity of the gait pattern increases without any profound loss in stability, and that
SFA appears to be suitable for the usage even at such levels of sensorimotor control that are directly involved
into motor activity regulation.

1 INTRODUCTION

Recent trends in cognitive robotics stipulate new
principles for designing intelligent systems, amongst
others ecological balance in the complexity of the sen-
sory, motor and neural systems of the agent (Pfeifer
and Bongard, 2006). In order to develop autonomous
robots that are able to learn advanced behaviours, par-
ticularly if they are presumed to learn in a fairly un-
supervised manner, we expect the integration of re-
dundantly covered sensory data channels to be inde-
spensable for better and stable control mechanisms.
For we are dealing with real hardware and a greatly
intricate real world environment, ably integration of
high-dimensional sensory data may increase stability
and adaptivity without losing the reactivity of the dy-
namical system formed by the robot and its environ-
ment.

On the other hand, the integration of multi-
dimensional sensory data streams asks for means to
extract useful information in a computationally ef-
ficient manner. Slow Feature Analysis (SFA), the
method applied in this paper is a promising candi-
date that may fulfill the forementioned constraints and

needs.
SFA is an unsupervised learning algorithm issu-

ing from the domain of theoretical biology. It was
developed in order to find a method for learning
and extracting invariances from visual data, exploit-
ing the idea of temporal slowness (also called tem-
poral stability, see e. g. (Wyss et al., 2006)), assum-
ing that high-level abstract features of the input sig-
nal vary slowly over time. SFA can deal with high-
dimensional data, for it is based on the generalised
eigenvalue problem for which fast and reliable algo-
rithms exist. By applying SFA to visual data, it could
be shown that temporal slowness is an important
learning principle, yielding structures that resemble
cells found in the visual cortex (Berkes and Wiskott,
2002; Franzius et al., 2007). Besides, also the algo-
rithm’s capability to detect and extract driving forces
from non-stationary time-series (Wiskott, 2003) as
well as its use for pattern recognition (Berkes, 2006)
have been investigated.

In a recent paper, we have successfully shown that
SFA can handle many kinds of sensory qualities by
applying it to abstract visual features, acceleration
sensor and motor position data from humanoid robots



(Spranger et al., 2009). SFA extracted meaningful
components from the multisensory input data stream
which were employed for detecting and classifying
postures of humanoid robots.

In this article we demonstrate how SFA can be
used to increase the reactivity of a biped gait pattern
provided for a humanoid robot platform. The gait pat-
tern is neuronally implemented and based on a senso-
rimotor loop. Although the walking pattern is gen-
erally stable, robots tend to fall to the ground when
walking on surfaces with a high grip, such as carpets
or natural surfaces. Thus, a mechanism to detect when
the gait becomes unstable is needed. One of the main
problems is that the fraction of time to avoid a col-
lision with the ground or at least alleviate its effects
is very short. However, in general both high stability
and reactivity cannot be easily achieved at the same
time. We show that SFA applied to a time embedded
signal is formally equivalent to a so-called Volterra
filter, and use SFA to learn the filter weights in an
unsupervised manner. The result is a highly reactive
filter which is incorporated into the sensorimotor con-
trol loop that generates the movement, decreasing the
response time of the dynamical system formed by the
robot and its environment, and consequently provid-
ing means for a robust fall detection and prevention.

To our knowledge this is the first attempt to use
SFA components for robot control, so that the pre-
sented work also constitutes a proof of concept for
the successful application of SFA within sensorimo-
tor loops.

The remaining paragraphs will cover the follow-
ing topics: After a short introduction to the Slow Fea-
ture Analysis and Volterra filters we present the robot
platform that was used for our experiments. Next, we
describe the examined gait pattern and our modifica-
tions to it. In the last section we present our results
and show that the modifications performed prove use-
ful for increasing the robots reactivity without desta-
bilitisation of the gait. We conclude this article with
a summary of the obtained results and by giving in-
sights into future work.

2 MATERIAL AND METHODS

2.1 Slow Feature Analysis

Slow Feature Analysis (SFA) is an unsupervised
learning algorithm that attempts to solve a particu-
lar optimisation problem related to temporal slowness
(see (Wiskott, 1998) for the original publication and
(Wiskott and Sejnowski, 2002) for a more extensive

introduction). The aim of the algorithm is to extract
slowly changing features from a multi-dimensional
input signal which vary over a short time scale.

The learning problem can be stated as follows:
Given a potentially multidimensional input signal
x(t) = [x1, ..,xN ]

T the algorithm searches for input-
output functions g j(x), j ∈ J that determine the output
of the system y j(t) := g j(x(t)). The objective func-
tion is given as

∆(y j) := 〈ẏ j
2〉t is minimal (1)

where 〈·〉t signifies the average over time and ẏ is the
derivative1 of y. The equation specifies the intended
learning problem of temporal stability, i. e. ∆(y j) is
minimal if y j varies slowly over time. However, every
constant function would easily fulfill this restriction,
so three additional constraints are formulated:

〈y j〉t = 0 (zero mean) (2)

〈y2
j〉t = 1 (unit variance) (3)

∀i < j 〈yiy j〉t = 0 (decorrelation) (4)

Equation 3 forces the output signal to carry informa-
tion. Equation 4 requires the set of output functions
to be decorrelated and therefore to carry different in-
formation and to not simply reproduce each other. It
also induces an ordering on the output signals, i. e.
the first signal y1 will be slowest one, while the next
signal y2 will be less optimal, etc.

Since the above stated optimisation problem is
in general hard to solve, SFA provides a solution to
learning the real valued functions g j by simplifying
the problem: The input-output functions g j are con-
strained to be linear combinations of a finite set of ba-
sis functions. Let the input signal be x = [x1, ..,xN ]

T ,
where N is the dimensionality of the input, then the
input-output function g = [g1(x), ...,gJ(x)]T can be
defined as the weighted sum of K basis functions
h = [h1, ..,hk]

T , yielding

y j = g j(x) :=
K

∑
k=1

w jkhk(x). (5)

In the linear case no specific basis functions are
used and the input-output functions compute as the
weighted sum of the input data; this application is
called SFA(1) or linear SFA. In order to deal with
nonlinearities in the input data the basis functions are
chosen to be a polynomial, usually quadratical, ex-
pansion of the input, leaving the weight vectors w j to
be learnt. This technique is similar to the so-called
kernel trick (Aizerman et al., 1964), for the expanded

1For we are dealing with discrete signals the derivative
is approximated by a finite difference: ẋ = x(t)− x(t−1).



signal serves as a basis for the vector space of polyno-
mials or at least some finite dimensional subset of that
vector space. The unit consisting of a polynomial ex-
pansion up to degree two combined with a linear SFA
is usually referred to as SFA(2) or quadratic SFA.

Denoting the original input data or in case of
SFA(2) the expanded data, respectively by x̃, param-
eters are learnt by applying SFA to the mean centered
signal x = x̃−〈x̃〉t . Obviously x automatically fulfills
constraint 2. Inserting x into the objective function 1
and into equation 4 yields

∆(y j) = 〈ẏ j
2〉t = wT

j 〈ẋẋT〉tw j =: wT
j Aw j (6)

and

〈yiy j〉t = wT
i 〈xxT 〉twT

j =: wT
i Bw j. (7)

Furthermore, constraint 3 can be integrated into equa-
tion 1, resulting in the new objective function

∆(y j) =
〈ẏ j

2〉t
〈y2

j〉t
=

wT
j Aw j

wT
i Bw j

. (8)

It is known from linear algebra that the solution to
this problem is given by the generalised eigenvalue
approach:

AW = BWL, (9)

letting W = [w1, . . . ,wn] be the matrix of the gen-
eralised eigenvectors and L the diagonal matrix of
the corresponding eigenvalues λ1, . . . ,λn. It can be
shown that the orthonormal set of eigenvectors sorted
in descending order accordingly to their correspond-
ing eigenvalues yields the weight vectors w j (Berkes,
2006).

One of the key features of the SFA algorithm is
that if the training signal shares most of the char-
acteristics of the target input signal, the learnt pa-
rameter set will generalise well on unseen data. Al-
though the previously described exact solution of the
optimisation problem is computationally demanding,
the application of a trained SFA(2) to new data sim-
ply consists in the multiplication of the nonlinearly
expanded, mean centered input signal by the SFA
weight matrix W.

Since the input signal might already be from a
high dimensional input space, SFA(2) does, due to the
polynomial expansion, heavily suffer from the curse
of dimensionality. In order to deal with the explosion
in dimensionality SFA can be applied successively
in networks of SFA modules, passing only a limited
amount of slowest components to the next module.
We will reduce the dimensionality of the input by
prepending the SFA(2) module with an SFA(1) mod-
ule.

2.2 Second-order Volterra Filters

It has been shown in (Berkes and Wiskott, 2006) that
every input-output function y j(t) = g j(x) learnt by a
quadratic SFA can be formulated in a general inho-
mogenous quadratic form as given by the following
equation:

y(t) = c+ fT x+xT Hx. (10)

Letting x(t) := [x(t −m + 1),x(t −m + 2), . . . ,x(t)],
i. e. a time embedded signal with tap delay m, this
form corresponds to the second-order Volterra series
with finite kernel which provides the basis for so-
called Volterra filters, a type of well-studied nonlin-
ear FIR filters2 (Mathews, 1991; Lau et al., 1992).
The coefficient terms c ∈ R, f ∈ Rm and H ∈ Rm×m

are also called the filter kernels. The relation between
SFA and Volterra filters is interesting insofar as clas-
sic approaches for the design of these filters focus on
supervised adaptation, whereas the SFA is a strictly
unsupervised method.

2.3 Embodiment

The humanoid robots used in our experiment are
robots of the so-called A-series platform, which was
developed at our laboratory specifically for research-
ing basic motion capacities, most importantly biped
walking. The robot is based on a commercially avail-
able robot kit, called Bioloid which was augmented
by additional processing power, a camera in the head
and several proprioceptive sensors. A PDA computer
attached to the back of the robot processes visual in-
formation provided by the camera. Eight micropro-
cessor boards are distributed across the body for ac-
tuator control, additionally featuring a two-axes ac-
celeration sensor each. The boards are located on the
hips, arms and shoulders. Each board controls up to
two actuators, while communicating via a shared sys-
tem bus, that integrates incoming and outgoing data
from the sensors, the motors and the PDA. The robot
features 21 degrees of freedom, 19 in the body, in-
cluding elbow, hand, hip, knee and foot joints, as well
as motors driving the pan-and-tilt unit for the camera.

2.4 Gait Pattern

The studied gait pattern is based on a neurally im-
plemented sensorimotor loop which was developed at
our laboratory. The underlying neural model consists
of standard time discrete units using the hyperbolic
tangent as a nonlinear transfer function.

2finite impulse response filters



Figure 1: Extract from a high speed video depicting the movement in the coronal plane.

The gait pattern starts with an oscillation in the
coronal plane, initiated by letting the robot move its
feet such that it subsequently displaces its weight
from one foot to the other in order to get the feet off
the ground. Figure 1 shows a series of snapshots from
a high speed video depicting this coronal movement.
Then, as soon as a sensory threshold is reached, the
robot starts moving its feet to the front, beginning to
walk.

In this article we concentrate on a specific piece
of the whole network, namely the part responsible for
the creation of the oscillating movement in the coro-
nal plane. On top of figure 2 the corresponding neu-
ral network is shown. The blue circles indicate input
coming from the robot’s sensors, red circles output to
the motors and finally white circles represent the fore-
mentioned neural units. A possible bias value is writ-
ten into the neuron. The input values received by the
network consist of data from two acceleration sensors
that are located on the robot’s left and right shoulder
and direct to the coronal plane. The calculated out-
put value is passed to the robot’s hip and ankle roll
motors.

The inputs are fed into a neuron where they are
equally weighted, summed and possibly distorted by
the nonlinearity of the hyperbolic tangent. In an ear-
lier version of the network the output of the neuron
was immediately fed into the motor outputs; however,
conducting the unfiltered signal directly to the motors
results in high energy consumption and a less stable
movement pattern because of high frequency compo-
nents which are contained in the possibly noisy ac-
celeration sensor data. Therefore, two IIR filters3 in
terms of two leaky integrators connected in parallel
(red neurons and weights) were introduced into the
network serving as a low-pass filter.

2.5 Application of the SFA

An obvious drawback of using a leaky integrator to
filter the sensory input is that it decreases the reactiv-
ity of the whole network. Therefore, the filter struc-
ture was replaced by an SFA module as depicted on
the bottom of figure 2. In contrast to the IIR fil-
ter more acceleration sensor values were integrated,
namely four sensors from both shoulders and another

3infinite impulse response filters
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Figure 2: Sensorimotor loops generating an oscillation in
the coronal plane. Top: Intermediate smoothing with an
IIR filter (red structure). ABML.Y and ASHR.Y denote the
robot’s coronal shoulder acceleration sensors. Bottom: Re-
placing the IIR filter by an SFA module. Integrating more
sensors into the SFA module yields more stable output com-
ponents.

four sensors located at the robot’s feet (overall four
sensors directing to the coronal plane and four to the
sagittal plane). All 16 sensors could have been used,
but in order to keep computational cost low the num-
ber of sensors was reduced as long as no deterioration
of the resulting SFA(2) components was observed.
Interestingly, the resulting components were slightly
better when also sagittal sensors were fed into the
SFA(2) module. This may be owed to the fact that
changes of the acceleration sensor values caused by
impacts never restrain only to a single plane or sen-
sor direction, respectively, but spread over the differ-
ent sensors due to the natural resonance of the robot’s
body.

The employed SFA module consists of several
subunits: First, the incoming sensory data is embed-



Figure 3: Comparing a weighted sum of the coronal acceleration sensors located at the shoulders to an IIR filtered signal and
the slowest component extracted by SFA.

ded in time. The number of tap delays was set to
eight, i. e. the current and the seven prior sensory data
values were passed to the SFA unit, which was em-
pirically evaluated to be a good compromise between
computational effort and smoothness of the resulting
signal. In the next step, the result from the time em-
bedding is fed into a linear SFA unit which reduces
the dimensionality of the signal to 16 components.
Then the 16 components are expanded using a poly-
nomial expansion up to degree 2 and at last passed
to a final SFA unit, together forming an SFA(2) unit.
Output signals from both the linear and the quadratic
SFA units are cut off and bound to [−10.0,10.0] in
order to prevent from very high values caused by the
polynomial expansion. Only the first and thus slowest
component y1 of the final SFA unit is considered and
used as a driving force for the motor outputs.

Although we described in (Spranger et al., 2009)
that it is possible to obtain very smooth resulting SFA
components by the application of several subsequent
SFA steps and without time embedding, this method
is inappropriate for this task. The reason is that a
cascade of subsequent SFA components adapts very
strongly to the training data, causing heavily jittered
components if applied to even slightly differing un-
seen input data.

2.6 Training Data

In order to use the SFA(2) module within the senso-
rimotor loop, the module has to be passively trained
on a recorded walking sequence. For comparison, dif-
ferent sequences were generated and used as training
data: The first type of sequences was generated us-
ing the earlier version of the gait pattern, not contain-
ing any type of filter, passing the acceleration sensor
value mix directly to the motors and therefore result-
ing in a less stable gait. (We will call this network
the unfiltered gait network). The second type of se-

quences was created using the network with the IIR
filter. (This net will be called the IIR gait network).
The sequences consisted only of the walking pattern
and did mostly not contain any remarkable distur-
bances. Sequences were recorded at 100 Hz and were
20 to 30 seconds long.

In each case the slowest component was used for
the motor outputs. However, the slowest component
had to be multiplied by −0.1 since the sign switched
according to the coronal acceleration sensor, and it
also had to be rescaled in order to be used as a motor
control value.

3 RESULTS

In our experiments the robots were connected to
a PC which ran the necessary control structures. We
used the SFA implementation available from the open
source Modular Toolkit for Data Processing (MDP)
(Zito et al., 2009).

In order to compare the obtained signals the η

value proposed in (Wiskott and Sejnowski, 2002) was
used:

η(y) :=
T
2π

√
∆(y), (11)

a smaller value indicating slower signals.

3.1 Extracted SFA Components

Figure 3 plots data stemming from an extract of an
SFA training sequence generated by the unfiltered gait
network. The acceleration sensor data mix, the sig-
nal obtained by the application of the IIR filter to the
acceleration data mix and the slowest component ex-
tracted by the SFA module are depicted. All signals
were whitened before plotting for better comparabil-
ity and calculation of η values. The acceleration data



mix’s η value being at 10.45 is much higher than the
values of the IIR and SFA filtered signals ranging both
at about 2.9. It is obvious that the resulting slowest
component is highly correlated to both the accelera-
tion data mix and to the IIR filtered signal. However,
a short delay in the SFA module compared to the other
signals issuing from the time delay is observable. As
shown later this has no negative impact on the reactiv-
ity of the system, although it does slightly lower the
maximum frequency of the coronal oscillation. The
SFA components resulting from training on a IIR gait
network looked similar.

3.2 Comparison to an LMS Adaptive
Volterra Filter

As mentioned before the trained SFA module corre-
sponds to a second-order Volterra filter. Therefore we
compared the SFA module to a filter obtained by an
adaptive algorithm based on a straightforward least
mean squares (LMS) approach (Lau et al., 1992), (Za-
knich, 2005, chapter 10.4). The algorithm was trained
with the input data and the same tap delay as the SFA,
the IIR filter output was used for the supervisor signal.
The weight terms were initialised with small random
values and different learning rates µ were tested. Ap-
plied to the same acceleration data mix as depicted in
figure 3, the optimal result of η = 4.36 was achieved
with µ= 0.01, yielding a slightly worse result than the
SFA and IIR filters.

3.3 Using SFA in the Sensorimotor
Loop

As the slowness criterion is not equivalent to the def-
inition of an ideal low-pass filter, it is by no means
guaranteed that the trained SFA module repels high
frequencies, and therefore there is a risk that high-
frequency components become predominant in the
signal and lead to instability of the whole gait. Any-
way, the SFA module build into the network structure
provided a stable walking gait when trained on walk-
ing sequences generated by the unfiltered gait net-
work. Unforeseen motor activity with strong jitters
was only experienced if the robot was not upright but
laid down or the like; obviously, this jitters can easily
be avoided, e. g. by using an SFA posture detector
signal inhibiting motor activity in non-upright posi-
tions.

Surprisingly, using an SFA module trained on se-
quences stemming from the IIR gait network yielded a
less stable gait and provoked more jitters. We hypoth-
esise that training an SFA module with noisier input

makes the resulting module more sensitive to the ex-
perienced noise and therefore more stable.

3.4 Impact of Disturbances

Now that we have shown the stability of the modified
gait network using SFA, we have to give evidence that
the reactivity of the system increases. In order to do
so we consider an artificially disturbed input signal
and compare the response of the trained SFA mod-
ule to the response of the IIR filter. Figure 4 shows
both reactions to an artificial stimulus, consisting of
an increasing negative value of 3 time steps (30 mil-
liseconds) duration added to all coronal sensors. The
dotted lines indicate how the IIR filter or the SFA
module, respectively, react on the non-disturbed sig-
nal, the continuous lines show the reaction to the dis-
turbance which is indicated by the red dots. While
the IIR filter remains almost unchanged, the distur-
bance exhibits strong impact on the SFA component
immediately. When disturbing the acceleration sen-
sors with positive values, the SFA component also ex-
hibits a remarkable reaction.

4 CONCLUSIONS AND FUTURE
WORK

We have demonstrated how Slow Feature Analysis, an
unsupervised learning algorithm based on the slow-
ness principle can successfully be integrated into sen-
sorimotor loops for advanced robot control. Using
a time embedded signal of noisy acceleration sensor
data recorded during a walk sequence of a humanoid
robot as training data for the SFA, we get a structure
that is formally equivalent to a second-order Volterra
filter. The obtained filter structure extracts the gait
pattern’s main characteristics from the training data
in a reliable and unsupervised manner, reducing noise
and disturbances. More importantly, the filter can be
used within the sensorimotor loop for the generation
of the walking pattern and its characteristics exhibit
higher reactivity than a comparable IIR filter.

This insight reveals new perspectives for the op-
portunities to use SFA for signal processing and
within sensorimotor loops, even at low levels which
are directly involved in motor activity control.
Equally, the new structure allows faster detection of
undesirable configurations of the robot.

Future work will focus on how the achieved in-
crease in reactivity can be efficiently used for the im-
provement of the safety of the gait pattern. Several ap-
proaches are conceivable, e. g. the reduction of motor
activity as soon as the SFA signal leaves its allowed
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range. Also one could imagine to use predictors that
are trained on the SFA component; a high prediction
error would then indicate upcoming problems.

Another promising investigation is the online
adaption of the calculated SFA component by an
adaptive LMS algorithm as mentioned in 3.2. This
would prove helpful in cases when the robot’s sensors
are exchanged and therefore slight decalibrations may
occur.

In addition, further investigation will be carried
out on the applicability of SFA to other use cases
for humanoid robotics. The newly available succes-
sor of the A-series platform, the M-series robot, is
equipped with a higher amount and additional modal-
ities of sensors, like pressure sensors located in the
feet, etc. Considering the results hitherto, SFA can
prove useful for the extraction of robust high level ab-
stract features that meaningfully describe the robot’s
states on one hand, and stabilise robot control on the
other hand.
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